
NASA/CR- 1999-209730

ICASE Report No. 99-47

Proof-term Synthesis on Dependent-type Systems via

Explicit Substitutions

C_sar Mu_oz

ICASE, Hampton, Virginia

November 1999

The NASA STI Program Off'we... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for

NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

Email your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at (30 i) 621-0134

Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 2 !076-1320

NASA/CR- 1999-209730

ICASE Report No. 99-47

Proof-term Synthesis on Dependent-type Systems via

Explicit Substitutions

C_sar Mu_oz

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operat'ed by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

November 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, M D 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

PROOF-TERM SYNTHESIS ON DEPENDENT-TYPE SYSTEMS VIA EXPLICIT

SUBSTITUTIONS

Ct_SAR MUN'OZ*

Abstract. Typed ,k-terms are used as a compact and linear representation of proofs in intuitionistic

logic. This is possible since the Curry-Howard isomorphism relates proof trees with typed)_-terms. The

proofs-as-terms principle can be used to check a proof by type checking the `k-term extracted from the

complete proof tree. However, proof trees and typed ,k-terms are built differently. Usually, an auxiliary

representation of unfinished proofs is needed, where type checking is possible only on complete proofs. In

this paper we present a proof synthesis method for dependent-type systems where typed open terms are

btfilt incrementally at the same time as proofs are done. This way, every construction step, not just the

last one, may be type checked. The method is based oil a suitable calculus where substitutions as well as

recta-variables are first-class objects.

Key words, proof synthesis, higher-order unification, explicit substitutions, dependent types, lambda-

calculus

Subject classification. Computer Science

1. Introduction. Thanks to the proofs-as-terms paradigm, a method of proof synthesis consists in

finding a term of a given type. Since the set of A-terms is enumerable, a complete method for proof synthesi,s

in a framework where type checking is decidable consists in enumerating and type checking all the terms.

Of course, this method is impractical for implementations. A smart enumeration of terms must take typing

information and properties of the),-calculus into account, hi [38], Zaionc presents an a lgorithnl for proof

construction in the propositional intuitionistic and classical logics via the simply-typed `k-calculus, and Dowek

shows in [12, 13] a complete term enumeration algorithm for the type systems of the Barendregt's cube.

Although ttle Curry-Howard isomorphism relates proofs with terms, proof construction and term syn-

thesis do not necessarily go in the same direction. A natural deduction proof, for example, is driven by a

bottom-up procedure, while term synthesis procedures go in a top-down manner. For instance, to prove a

proposition B by Modus-Ponens, we assume A --+ B and A as hypotheses, and then we continue recursively

trying to prove these two propositions. Eventually, we will get the axioms and the proof is finished. In

contrast, to synthesize a term of type B, we start with the axioms to set up the variables, and then go down

to the conclusion where the final term has tile form (M N) with M a term of type .4 _ B and N a term of

type .4.

These two different construction mechanisms, bottom-up proof construction and top-down term syn-

thesis, coexist in some theorem provers based on the proof-as-term paradigm. For example, in the proof

assistant system Coq [3] proofs under construction, also called incomplete proofs, are represented as proof-

trees. When the proof is done, a `k-term, that is, a complete pTvof-term, is synthesized. The soundness of

*Institute for Computer Applications in Science and Engineering, Mail Stop 132C, NASA Langley Research Center, Hampton,
VA 23681-2199, emaih munoz@icase.edu. This research was supported by INRIA - Rocquencourt while tile author was an

international fellow at the INRIA institute, by National Science Foundation grant CCR-9712383 while he was an international

fellow at SRI International, and by the National Aeronautics and Space Administration under NASA Contract NAS1-97046

while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley

Research Center, Hampton, \5'_ 23681-2199.

thesystemreliesonthetypechecker,whichisaverysmallpieceof code.However,if somethinggoeswrong
withtheproof-treeconstruction,forexamplebecauseaproceduremanipulatinga proof-treeisbugged,the
problemisdetectedwhenthetypecheckingof thecomplete proof-term takes place. That means, at the very

last step of the proof-term synthesis.

A uniform representation of complete and incomplete proofs allows to identify the proof construction

and term synthesis mechanisms. Furthermore, if such a representation supports an effective type-checking

procedure, type inconsistencies can be detected during the whole process of the proof-term construction.

In [28], Magnusson proposes an extension to the A-calculus with place-holders and explicit substitutions to

represent incomplete proofs. Her ideas were implemented in the theorem prover Alf [2], but a complete

recta-theoretical study of the system and its properties is missing.

A term with place-holders is called an open teT_n. Since several place-holders can appear in an open

term, it. is convenient to name them. In the A-calculus with de Bruijn indices, named place-holders are just

variables of the free-algebra of terms. In order to distinguish place-holders from variables of the A-calculus,

the former are called recta-variables. As a convention in this paper, meta-variables are written with the last

uppercase letters of the alphabet: X, };

The open term Ax:A.Y, can be seen as a proof-term of ,4 _ B provided that there exists a term of

type B in the right context to replace 1". By using this replacement mechanism, also called instantiation,

an incomplete proof becomes a complete one. In contrast to substitution of variables in the A-calculus,

instantiation of recta-variables is a first-order substitution that does not care about capture of variables. In

the previous example the instantiation of l" with x results in the term Ax:A.z, while the substitution of x

for I '_ in _z:,4.t _ results in Az:A.x. Notice that unless .4 and B represent tile same type. the resulting terms

in both cases may, be ill-typed.

As pointed out in [28, 15], open terms in the A-calculus reveal new challenges. Assume, for example,

that an open term is involved in a fl-redex. The fl-rule can create substitutions applied to meta-variables

that cannot, be effective while the recta-variables are not instantiated. In this case, a notation for suspended

substitutions should be provided. Since tile Aa-calculus of explicit, substitutions was introduced in [1], several

other variants of explicit substitutions calculi have been proposed; among others [1, 36, 26, 23, 6, 27, 11, 24,

30, 18, 32]. The study of explicit substitution calculi showed up to be more complicated than that of the

A-calculus. For some of the explicit substitution calculi, questions about confluence, normalization and type

checking are still open.

In [31, 33], we propose a variant of Aa, called AIIc, for dependent-type theories like AII [20] and the

Calculus of Constructions [8, 9]. The AIIc-calculus is confluent and weakly; normalizing on well-typed

expressions. The AIIc-system does not enjoy confluence on tile full set of open expressions, that is, AIIc is

no longer confluent when recta-variables on the sort of substitutions are considered, and it does not preserve

strong normalization, that is, arbitrary, reductions on well-typed expressions may, not terminate. However,

we claim in this paper that the AIIc-calculus is suitable as a framework to represent incomplete proof-terms

in a constructive logic.

In this paper we describe a proof-term synthesis method for AII and the Calculus of Construction via the

AIIc-calculus. The method uses the incomplete proof-term paradigm proposed in [33]. It is strongly inspired

by that proposed by Dowek in [12, 13] for the Cube of Type Systems. In contrast to Dowek's method,

our method combines both the bottom-up approach for proof construction, and tile top-down synthesis of

terms. In other words, proof-terms are synthesized at the same time that proofs are constructed. Since type

checking is decidable in AIIc, the soundness of the proof construction can be guaranteed st.ep by st.ep. From

apracticalpointofview,implementationerrorsinproceduresmanipulatingincomplete-proofsaredetected
bythetypecheckerat anymomentduringtheproof-constructionprocess.Thetypechecker of AII_ is still

simple. In fact, we have implemented it, in the object-oriented functional language OCaml, in about 50

lines. We have also implemented a higher-order unification algorithm for ground expressions. Tile soundness

of the whole implementation relies in the small piece of code corresponding to the type checker.

The rest of this section gives an overview to the dependent-type systems in which we are interested,

the AH-calculus and the Calculus of Constructions, and to the Aa-calculus of explicit substitutions. For a

more comprehensive explanation on both subjects, we refer to [20, 9] and [1]. In Section 2, we present the

AHc-calculus and its dependent-type systems. In Section 3, we describe our method of proof synthesis. The

soundness and completeness of the method are proved in Section 4. The last section presents related work

and summarizes this work.

1.1. Dependent-type systems. The Dependent Type theory, namely AH [20]. is a conservative ex-

tension of the simply-typed A-calculus. It allows a finer stratification of terms by generalizing the function

space type. In fact, in AH, the type of a function Ax:A.M is IIx:A.B where B (the type of M) may depend

on x. Hence, the type A --4 B of the simply-typed A-calculus is just a notation in AH for the product Hx:A.B

where x does not appear free in B.

From a logical point of view, the AH-calculus allows representation of proofs in the first-order intu-

itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type IIx:A.B is a

proof-term of the proposition Vx:A.B.

Terms in AH (:an be variables: x, y_..., applications: (M N), abstractions: Ax:A.M, products: IIx:A.B,

or one of the sorts: Type, Kind) Notice that terms and types belong to the same syntactical category.

Thus, IIx:A.B is a term, as well as Ax:A.M. However, terms are stratified in several levels according to

a type discipline. For instance, given an appropriate context of variable declarations, Ax:A..M : IIx:A..B,

Hx:A..B : Type, and Type : Kind. The term Kind cannot be typed in any context, but it is necessary since

a circular typing as Type : Type leads to the Girard's paradox [19].

Typing judgments in AII have tim form

Fk-M:A

where F is a context of variable declarations, that is, a set of type assignments for free variables. _ use the

Greek letters F, A to range over contexts. Since types may be ill-typed, typing judgments for contexts are

also necessary. The notation

t-F

captures that types in F are well-typed. The AH-type system is given in Figa_re 1.1.

Tile Calculus of Constructions [8, 9] extends tile AII-calculus with polymorphism and constructions of

types. It is obtained by replacing the rules (Prod) and (Abs) as shown in Figure 1.2.

In a higher-order logic, as AII or the Calculus of Constructions, it may happen that two types syntactically

different are the same module fl-conversion. Tile rule (Cony) uses the equivalence relation -;_ which is defined

as the reflexive and transitive closure of the relation induced by the fl-rule:

(Ax:A.M N) _ M[N/x]. We recall that M[N/x] is just a notation for the atomic substitution of the free

occurrences of x in M by N, with renaming of bound variat)les in ._I when necessary.

1The names Type and Kind are not standard, other couples of names used in the literature are: (Set, Type), (Prop,Type)

and (*, 1:3).

- (Empty)

t-F (Type)
Fb Type : Kind

F _- A: Type

x does not appear in F

FU{x:A}P B:s

s 6 {Kind, Type}
F b IIx:A.B : s (Prod)

F _ M : IIx:A.B

FbN:A

F t- (M N): A[N/x] (Appl)

Ft-A:s

s E {Kind, Type}

x is a fresh variable

_- F u {x : A}

t-F

(x :.4) E r
F_-x:A (Var)

F t- A : Type

x does not appear in F

FU {x : A} _-M : B

FU {x : .4} F B : s

s E {Kind, Type}
F I- Ax:.4.M : IIx:A.B

F P M : A

FPB:s

s E {Kind, Type}

A -_ B
FPM:B

FIG. 1.1. The AII-system

(Var-Decl)

(Abs)

(Cony)

x does not appear in F

x does not appear in F Ft0 {x : A} I- M : B

ru{.:A} _B:_ ru{.:A}_B:s
s E {Kind, Type} s E {Kind, Type}
F _- IIx:A.B : s (Prod) F P Ax:A.M : FIz:A.B (Abs)

FIG. 1.2. The r_ales (Prod) and (Abs) of the Calculus of Constructions

1.2. Explicit substitutions. Tile Act-calculus [1] is a first-order rewrite system with two sort, s of

expressions: terms and substitutions. _ll-formed expressions in the Aa-calculus are defined by the following

grammar.

Terms M,N ::= 1](MN) IM_I]M[S]

Substitutions S,T ::= id [t I M . S I S o T

The Act-calculus is presented in Figure 1.3.

In Aa, free and bound variables are represented by de Bruijn indices. They are encoded by means of the
,,-times

,%

constant 1 and the substitution _'. We write 1"" as a shorthand for 51"o ... o "_. We overload the notation i to

()_gI N) ----+ gI[N . ic_ (Beta)

(M N)[S] _ (M[S] N[S]) (Application)

(_M)[S] --_ _M[i- (S o t)] (Lambd_)

M[S][T] --+ M[S o T] (Clos)

I_[M. S] --+ _I (VarCons)

M[_d] ---+ M (_d)

(S, o $2) o T --_ S_ o ($2 o T) (Ass)

(M . S) o r --+ M[T] . (S o T) (Map)

id o S ---+ S (Idl)

S o id --+ S (Idr)

"["o (M. S) --+ S (ShiftCons)

1. "_ --+ id (VarShiff)

![S]. (i"o S) --+ S (SCons)

FIG. 1.3. The Aa-calculus [1]

represent the Aa-term corresponding to the index i, i.e.,

1 ifi=li= ![$'] ifi=_+l.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the

term i, I" nmps each index i to the term i + l, S o T is the composition of the mapping denoted by T with

the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect

to the usual notation of function composition), and finally, 111 - S maps the index 1 to the term M, and

recursively, the index i + 1 to the term mapped by the substitution S on the index i.

2. A Framework to Represent Incomplete Proof-Terms. The important elements of our frame-

work are: explicit substitutions, open terms, and dependent types. A simply-typed version of Aa on open

terms has been studied in [15]. In [31, 33], we propose the)_Hc-calculus which is a dependent-typed version

of a variant of ka. The MIc-calculus is confluent and weakly normalizing on well-typed terms.

As usual in extflicit substitution calculi, expressions of AIIL are structured in terms and substitutions.

The AIIc-calculus adnfits meta-variables only on the sort of terms.

The set of well-formed expressions in AIIc is defined by the following grammar:

Natural numbers

Meta-variables X

Sorts s

Terms A, B, M, N

Substitutions S, T

::= 0 In + 1

::= X[_'l ...

::= Kind] Type

::= i f .s"I HA.B I AA.M I

(M N) I M[S]I x

::= $']M.AS[SoT

An expression in)d'IL is ground if it does not contain meta-variables. A ground expression is also pure

if it does not contain explicit substitutions (other than those representing de Bruijn indices).

(,XA.MN) --_ M[N "A 1.0] (Beta)

(AA.]ff)[S] _ AA[,,.].M[1 ".4 (S o ?')] (Lamt)da)

(II4.B)[S] _ nA[S].B[!'A (So?')] (Pi)

(M N)[S] ---* (M[S] N[S]) (Application)

M[S][T] _ M[S o T] (Clos)

I[M "A S] _ M (VarCons)

M[I "°1 --_ M (Id)

(_t .4 s) o T --+ M[T] "A(S o T) (Map)

1,o o S _ S (IdS)

1"'+* o (M ".4 S) ---+ ¢" o S (ShiftCons)

T "+1 o I"_ ---+ j'" o j,._+l (ShiftShift)

1 'A T 1 _ j,o (Shift0)

l[']'n] ",4 .[.n+l _]'" (ShiftS)

Type[S] _ Type (Type)

FIG. 2.1. The AItr-rewrite system

In depen(tent-type systems, object terms and type terms are in the same syntactical category. In this

paper, for readability, we use the uppercase letters A, B,... to denote type terms, that is, terms of type

(kind) Type or Kind, and M, N, ... to denote object terms, that is, terms of type A where A is a type term.

The equivalence relation -_riL is defined as the symmetric and transitive closure of the relation induced

by the rewrite system in Figure 2.1. As usual, we denote by _ the reflexive and transitive closure of

AFIc.

The system IIc is obtained by dropping the rule (Beta) from MI_:. As shown by Zantema [40], the

IIz:-ealculus is strongly normalizing.

LEMMA 2.1. The IIc-calculus is terminating.

Proof See [33]. The proof uses the semantic ial)eiing tecliiiiqiie [39]. []

The set of normal-forms of an expression x (term or substitution) is denoted by (x)$nc.

The _IIc-cal('ulus, just as)_a, uses the composition operation to achieve confluence on terms with

met.a-variables. Th(, rules (Idr) and (Ass) of Aa are not necessary in MIc.

We adopt the notation _ as a shorthand for 1[]"n] when i = n + 1. In contrast to Aa,]'" is not a

shorthand but an exl)licit substitution in)ffIc. Indeed, 1,0 replaces id and 1.1 replaces 1". In general,]"_

denotes the mapping of each index i to the term i + n. Using]", the non-left-linear rule (SCons) of A_,

wtiich is responsible of confluence and typing problems [11, 5, 33], can be dropped of the AHc-calculus.

Notice that we do not assume any meta-theoretical property on natural numbers. They are constructed with

0 and n + 1. Arithmetic calculations on indices are embedded in the rewrite system.

A context in ,kIIc is a list of types. The empty context is written e. A context with head A and rest F

is written A.F. In that case, A is the type of the index 1, the head of F (if F is not empty) is the type of

the index 2, and so on. In a dependent-type theory with de Bruijn indices, the order in which variables are

declared in a context is important. In fact, in the context A.F, the indices in ,4 are relative to Y.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping

from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context

A.A, tile type of the term mapped by the substitution S on the index 1 is .4, and so for the rest of indices.

2.1. Meta-variables. As we have said, meta-variables are first-class objects in AHz:. Just as variables,

they have to be declared in order to keep track of possible dependences between terms and types.

A meta-variable declaration has the form X: rA, where F and A are, respectively, a context and a type

assigned to the meta-variable X. The pair (F,.4) is unique (modulo _n_) for each meta-variable. This

requirement is enforced 1)y the type system.

A list of meta-variable declarations is called a signature. We use the Greek letter E to range over

signatures. Tile empty signature is written c. A signature with head X: [-A and rest E is written X: rA. E.

We overload the notation El. E2 to write the concatenation of the signatures E1 and E.,.

The order of the meta-variable declarations is important. In a signature

Xa: r, A1 X,: F,,A,,, the type A, and the context Fi, 0 < i < n, may depend only on meta-variables

Xj, i < j _< n. The indices in .4i are relative to the context F_.

The main operation on meta-variables is instantiation. The instantiation of a meta-variable X with a

term M in an expression y (term or substitution) replaces all the occurrences of X in y by M.

DEFINITION 2.2 (Instantiation). The instantiation of a meta-variable X with a term M in an expression

y, denoted y{X/ M}, is defined by induction over the structure of y as follows.

• s{X/l_l} = s if s • {Kind, Type}.

• !ix�M} = 1.

• xIx/M} = _t.

• _Ix/MI = _', ilv # x.

• (HA.B)IX/M} = nA|x/M_.BIX/M}.
• (,_A.N)IX/M} = ,_AIX/M}.NIXIM}.

• (!v, N._,)tx/M} = (x_Ix/Mt _,',{x/M}).
• (N[S])IX/M} = XIX/MI[SIX/M}].

• _ IX� M} = "r_.

• (J¥ "A S)t.Y/_[I _- l¥tX/_I} "A{X/M} StX/*'_[}"

• (S o T)IX/M} = SIX�M} o T|X/Mt.
Application of instantiations extends to context and signatures, that is, F{X/M} and E{.\'/5I}, in the

obvious way. In the case of signatures, the application E{X/M} also removes the declaration of X in E, if

any.

In contrast to substitution of variahles, instantiation of meta-variables allows capture of variables. More-

over, instantiations are not first-class objects, i.e., the application of an instantiation is atomic and external

to ttle M-[_-calculus.

2.2. Type annotations. Type annotations in substitutions are introduced with t!m rules (Beta),

(Lambda), and (Pi), and then propagated with the rule (Map). They can also be eliminated with the rules

(VarCons), (ShiftCons), and (Shift0). Notice that the type annotation that is propagated 1)3"tile rule (Map):

(M .A S) o T _ M[T] .A (S o T)

is A, not..4[T]. Type annotations in substitutions act as remainder of types when substitutions are distributed

under abstractions and products. As shown in [33], they are necessary to preserve typing in MI_-reductions.

2.a. q-conversion. In this paper we consider a calculus without _-conversion. Although, extensional

versions of explicit, substitution calculi have been studied for ground terms [24], work is necessary to under-

stand the interaction of the 71-rule with explicit substitutions, dependent types, and recta-variables.

(Empty)

E;FF-A:s

s E {Kind, Type}
_- E; A.F (Var-Deel)

E;F

X is a fresh meta-variable

_- X: rKind. E

E;FF-A:s

s E {Kind, Type}

X is a fresh meta-variable

t- X:rA. E

(Meta-Var-Decll)

(Meta-Var-Decl2)

Fie,. 2.2. Valid signatu_s and contexts

2.4. Dependent types. In AHc, we consider typing assertions having one of tile following forms:

F- E;F

to capture that the context F is valid in tile signature E,

E; F _- M : .4

to capture that the term /_I has type A (the type 2_I has the kind A) in E; F, and

E;Ft-S_A

to capture that the suhstitution S has the type A in E; F. The seeping rules for variables and recta-variables

are as follows. Contexts F, A, and expressions M, A, S may depend on any meta-variable declared in the

respective signature V. Indices in M, A and S are relative to their respective context F.

Typing rules for signatures, contexts, and expressions are all mutually dependent. Valid signatures and

contexts are defined by the typing rules in Figure 2.2.

\hlid MIc-expressions the AH-system are defined by the typing rules in Figure 2.3. In the case of the

Calculus of Constructions, the rules (Prod), (Abs), and (Cons) are modified as indicated in Figure 2.4.

Finally, conversion rules, on both systems, are defined in Figure 2.5.

In the following, we use F- E, _- F, F _- M : A, and F _- S _, A as shorthands for F- E; e, I- e; F, e; F _- M : A,

and e; F t- S _,A, respectively.

In this paper, unless otherwise stated, a judgment like E; F _- M : ,4 refers to the setting of AHc in the

Calculus of Constructions. However, the main properties of AIIc hold in both the Calculus of Constructions

and the AH-systein. We prove in [31, 33] that AII_ satisfies, among others, the following properties (for the

sake of simplMty we show the properties only for typed terms, but they hohl in the same way for typed

substitutions):

PROPOSITION 2.3 (Sort soundness). If Z;F _- M : A, then either A = Kind, or E; F F- .4 : s, where

s e {Kind, Type}.

PROPOSITION 2.4 (Type uniqueness). If E; F I- M : .4 and E; F F- M : B, then A -;m_ B.

k E;F
v. F t- Type : Kind (Type)

_- E; A.F (Var)
E;A.F I- 1: A[? 2]

E; F f- .4 : Type

E;A.F }- B : s

s E {Kind, Type}

E; f t- IIA.B : s
(Prod)

E; F F- ,4 : Type

E;A.F t- M : B

E; F F- IIA.B : s

s E {Kind, Type}
z7 F-V_ - W_A.B(abs)

E;F _- M : HA.B

E; F k hT : ,4

E; r I- (M N): BIN "a],o] (Appl)

E;Fk-S>A

E; A k M : .4

E;A k-A:s

s E {Kind, Type} (Clos)
E; r k- M[S]: A[S]

V. Fk- S_,A

E;A _ A : Kind

E; F f- A[S] : Kind (Clos-Kind)

kE;F

X:AA ¢ E

A -xn_ F_4 (Meta-Var)E;Fk-X:.

k E;F
v. F I- t o (Id)_, I>F

_- E; A.F

E; F k $" _ A

E; A.F t- t "+j _ A (Shift)

E;FI- ToS> Aa
(Comp)

E;F _ 3I :A[S]

E;FkSt, A

E; A F- .4 : Type (Cons)
E;F t- M.A S > A.A

FIG. 2.3. Valid expressions

E;A.F k- B : s

s E {Kind, Type}

E; F [- IIa.B : s
(Prod)

E;A.F t- M : B

V-A.F_- B: s

s E {Kind, Type} (A1)s)
E; F 1- AA.M : IIA.B

v. r _ M : A[S]

E;Fk- S_A

E;A}- A:s

C {Kind, Type} (Cons)
E;F _ M-A St, A.A

FIG. 2.4. The modified rules (Prod), (Abs), and (Cons)

Z;FI-M:A

Z;F_-B:s

s e (Kind, Type}

A --_nc B

Z;Ft-M:B

E;F_- S_, Ax

J- Z; A2

A1 -_n_ A2
(Conv) Z; F I- S K>A2 (Cony-Subs)

FIG. 2.5. Conversions

PROPOSITION 2.5 (Subject reduction). IfM xn_____N and E;F l- M : ,4, then Z;F F- N : A.

PROPOSITION 2.6 (Soundness). If Z; F I- M : A, Z; F F- N : B and M --AnL N, then there exists a

path of well-typed reductions between A and B.

PROPOSITION 2.7 (Weak normalization). If Z; F F- M : A, then M is weakly normalizing; therefore, M

has at least one AHc-normal form.

PROPOSITION 2.8 (Church-Rosser). If 211, -_nL M.2, E; r I- 2_la : A, and E; F F- ._I2 : .4, then 2lli and

M.a are AIIc-joinable, i.e., there exists M such that 2111 _ M and M.2 _ M.

COROLLARY 2.9 (Normal forms). The AIIc-normal form of a well-typed AIlc-term always exists, and

it is unique. If M is a well-typed term, we denote by (M)$An c its ARc-normal form.

The following proposition states the conditions that guarantee the soundness of instantiation of meta-

variables in AIIc.

PROPOSITION 2.10 (Instantiation lemma). Let M be a term such that Z1;F F M : A, and E a signature

having the form E.,.. X: vA. El,

1. if _- Z; A, then F- ElX/21I}; A{X/M},

2. if Z;A_-N:B, then

_{x/M}; A|XIM} _ N|X/M} : B|X/Mt, and

3. i� x; ,x, _-s _ A_,, then XlX/aq; A, {X/M} _-SIX/Mt _ A_IX/M}.

Finally, the next property justifies the use of AIIc to build proof-terms in a constructive logic based

on a dependent-type system. It states that when the signature is empty, Al-lc types as many terms as the

A-calculus does.

PROPOSITION" 2.11 (Conservative extension). Let M,A be pure terms in AIIc, and F be a context

containing only pure terms. Then, F t- M : A in AIIc /f and only _f F P M : A in the respective dependent-

typed version of the A-calculus (modulo de Bruijn indices translation).

3. A Proof Synthesis Method in AIIc. We introduce the basic ideas of our technique with an

example. For readability, when discussing examples we use named variat)les and not de Bruijn indices.

Nevertheless, we recall that our formalism uses a de Bruijn nameless notation of variables.

Assume a context with the following variable declarations

bool : Type,

nat : Type,

f :nat -4 nat -4 bool,

g : (nat -4 bool) _ nat,

not : bool -4 bool,

eq : bool -4 bool _ Type,

tt : Hp:(nat -4 bool) -+ bool.IIx:nat -4 booI.(eq (p x) (n,ot (p (f (9 x))))).

10

We address the problem of finding terms X and Y such that X : (eq 1"]') and 1" : bool. This problem

happens to be a paraphrasing of a fornnflation given in [14] of the famous Cantor's theorem that there is

not surjection from a set (in this case nat) to its power set (formed by the elements of type nat -4 bool). It

can be solved, for example using Dowek's method, by enumerating all the terms 1" of type bool, and then

tile terms of type (eq l" l').

However, by combining proof construction and term synthesis we can do better. Instead of looking

directly for Y, we could claim to know it, and try to find a term of type (eq Y]'). Then, we use the typing

information available for eq to guide the proof-term synthesis.

In our framework, we assume two meta-variable declarations Y : bool and X : (eq _" Y). Notice that

the meta-variable I" appears in the type of X. In fact, in contrast to the simply-typed A-calculus, in a

dependent-typed calculus meta-variables may appear in types and in contexts. Typing rules for open terms

should take into account these considerations.

A solution to X and I" is a couple of ground terms M, .4 such that when X is instantiate with M and

Y with A, it holds M : (eq A A) and A : bool.

By looking at the context of variables, we notice that a possible instantiation for X should use the

variable h. Since we do not know the right arguments p and z to apply h, we declare new meta-variables

Xp : (nat -4 bool) -4 booI and X_ : nat -4 bool, and proceed to instantiate X with (h Xj, X_).

At this stage of the development, we have the following situation. Three meta-variables to solve: Y : bool,

Xp : (nat -+ bool) -4 bool, and X_ : nat -4 bool, and the incomplete proof-term (h Xp X_) of type

(eq 1" Y). However, there is something wrong. The type given by the type system to the term (h Xp X,)

is (eq (X_, Xx) (not (Xp (f (g Xx))))), which is not convertible to (eq]" l'). In fact, we should have been

more careflfl with the instantiation of X with (t_ Xp Xx). Since two syntactically different types can become

equal via instantiation of meta-variables and ;J-reduction, we can instantiate a meta-variable with a term of

difforent type, but we have to keel) track of a set of disagreement types. In our case, if we want to instantiate

X with (h Xp Xx), we ha_'e to add the constraint (eq (Xp Xx) (not (Xp (f (g Xx))))) --_nL (eq]" 1") to the

disagreement set.

Thus, the goal is not to find any ground instantiation for the meta-variables, but. one that reduces the

disagreement set. to a set. of trivial equations of the form M = M, where M is a ground term.

If the original proposition holds, eventually we will instantiate all the meta-variables in such a way that

the disagreement set is also solved. A possible solution to our example is

X._ = Ay:nat.(not (f y y)),

Xp = £x:,mt -4 bool.(x (g Ay:nat.(not (f y y)))),

1" = (not (f (g Ay:nat.(not (f y y))))), and

X = (h Ax:nat --+ bool.(x (g Ay:nat.(not (f y y)))) Ay:nat.(not (f y y))).

That solution was found by our prototype in 209 rounds (including back-tracking steps). Each round corre-

sponds to the instantiation of one nmta-variable or the simplification of the disagreement set. This number

contrasts with the 1024 rounds that it took out" algorithm to find the same solution by first enumerating all

the terms of type bool.

The method to solve a set of meta-variables and a disagreement set can be summarized as:

1. Take a meta.variable X to solve. Because eventually, all the meta-variables ha_'e to be solved, any

of them can be chosen. However, as we will explain later, some typing properties guide the choice

of an appropriate meta-variable to solve.

2. By using the type information, propose a term M, probably containing new meta-variables, to

11

instantiateX.

3. Declare the new meta-variables appearing in M, and add to tile disagreement set the typing con-

straints necessary to guarantee the soundness of the instantiation.

4. Simplify tile disagreement set. If a typing constraint is unsatisfiable, backtrack to step 2. Restore

the disagreement set to that point.

5. Stop if all the meta-variables are solved and tlle disagreement set contains only trivial equations.

Otherwise, call recursively the procedure.

Our method improves Dowek's method in three ways:

• Proof construction and term synthesis are coinbined in a single method. Therefore, proof assistant

systenls based oil the proofs-as-terms paradigm can use our framework to represent uniformly proof

under construction and proof-terms.

• The first-order setting of the AIIc-calculus eliminates most of the technical problems related to the

higher-order aspects of the _-calculus.

• In Dowek's method, variables, and not meta-variables, arc used to represent t)lace-holders. Since,

these variables should range over all the set of well-typed terms, the type system where the proof

synthesis method is described allows variable declarations where the original type system does not.

That type system introduces some technical nuisances [12, 13]. In our framework this is not necessary.

Meta-variables and variables have different declaration rules. In particular, meta-variables can be

typed in sorts where variables cannot (see rules (Meta-Var-Decll), (.\Ieta-Var-Decll), and (Var-

Decl)).

3.1. The)_IIc-calculus with constraints. As we have seen in the informal description of the method,

instantiation of meta-variables may need the resolution of a disagreement set. Indeed, the disagreement set

is maintained in an extended kind of signatures called constrained signatures.

DEFINITION 3.1 (Constrained signatures). A constraint tll _-r N relates two terms M,N, and a

context F. A constrained signature is a list containing meta-variable declarations and constraint declarations.

ForntaIly, they are defined by the following grammar:

Constrained signatures _-z "'- e I X: rA. -] _I ---r N. E

Notice that constraints are declared together with recta-variables. This way, the type system may enforce

that a constraint uses only meta-variables that have already been declared in a signature.

DEFINITION 3.2 (Equivalence modulo constraints). Let E be a constrained signature; we define the

relation -_. as the smallest equivalence relation compatible with structure such that

1. if M-_n_ N, then M =_= N, and

2. if M _-r N C --, then M --- N.

We extend the AIIc-ealeulus to deal with constraints.

DEFINITION 3.3 ()_IIc-with constraints). The type system AIIc with constraints is defined as AHc in

Section 2, where we denote typing judgments by _., E, _ --; F and =; F _ M : A, we add the rule

--; F _ M_ : A

--; F }-- M2 :A
Ml _--r M..,. - (Constraint)

12

and we replace the rules (Conv), (Cony-Subs), and (Meta-Var) by

_,--'F _ M :A

=.Fb_ B :s E;F_S:,A

s E {Kind, Type} b" E; A'

A -z B A =_=_A'

E; r _ M : B (Conv) E; r _-. S _, A' (Cony-Subs)

P E;F

X:,aA ¢ E

A-=F

r_;r p _': A (Meta-Var)

As expected, a constrained signature E is said to be valid if it holds b" E.

The MIc-calculus with constraints does not satisfy most of the typing properties of AIIc given in Sec-

tion 2. In particular, it is not normalizing (not even weakly). For instance, the non-terminating term

(Ax:A.(x x) Ax:A.(x x)) can be typed in a constrained signature containing A _- A _ A.

However, we can prove the following properties.

LEMMA 3.4. Let - be a valid constrained signature and E be the signature where we have removed all

the constraints of--,

1. (a) if _- E;F, then _--;F,

(b) if E;F P M :A, then F.; F b" M :.4, and

(c) if E;FPS_,A, then E;F _ S _, A; and

2. if-- does not contain constraints, i.e., E = --, then

(a) if _ E;F, then F- E;F,

(b) if E;F_M:A, then E; F I- M : .4, and

(c) if -;F 1_ S _, A, then E;FI- S_, A.

Proof. By simultaneous induction on the typing derivations. D

According to Lemma 3.4, if E' is a prefix of a signature E, and it does not contain constraints, the set of

expressions that are typeable in E' satisfies the properties given in Section 2; in particular, these expressions

have a MIc-normal form (Corollary 2.9). This is no longer true if E' contains constraints. We exploit this

fact to simplify constrained signatures. Indeed, we define the AIIc-normal form of a constrained signature,

with respect to the largest prefix which does not contain a constraint. We will see later that constrained

signatures in MIc-normal form allow us to prune the search space of solutions to meta-variables.

DEFINITION 3.5 (Normal form of a constrained signature). Let -- be a valid constrained signature, the

MIc-normal form of-, denoted by (--)$_nc, is defined by structural induction on =-.

1. (e)$_n _ = e,

2. - has the form X:rA. E' or M _-r N. =-'

• if--' contains constraints,

(X: rA. -'){),n_

(M -r N. ---'){xn_

• if--' does not contain constraints,

(X: cA. --')$_n_

(M -_r N.-')$_n_

(M _r N. -')$xnL

= X:rA. (-)$xnL

= M -_r N. (:)$_n_,

= X: (r)+_._ (A){_n_. (-)$_nc

_t

= (M)$_nc -_(r)+xnc (N)$xnc" (-)Sane,
otherwise.

13

The),IIc-normal form of a constrained signature preserves typing.

LEMMA 3.6. Let F_ be a valid constrained signature,

1. _, -; F if and only if _ (--)$xnL ; F,

2. E;F t- M : A if and only if (--)SAne;F _ M : A, and

3. F.; F _- S t> A if and only if (---)$>,nc ; F _ S _,A.

Proof. By simultaneous induction oil the typing derivations. [3

3.2. The problem. A constrained signature can be seen as a list of goals to be solved. Informally

speaking, to solve a signature means to find ground instantiations for all tile meta-variables in a way that

all the constraints are reduced to trivial equations.

DEFINITION 3.7 (Parallel instantiation). A parallel instantiation of a constrained signature F. is a

function _z from meta-variables of -- to terms. As usual, the function i_z is extended to be applied to

arbitrary expressions. When E can be inferred from the context, we simply write _.

DEFINITION 3.8 (Solution). Let 2 be a valid constrained signature, we say that a parallel instantiation

is a solution to -- if and only if

1. for any constraint M _-r N E --, we have _(F) _- _(M) : A, _(F) t- _(N) : A and _(M) -_nc

• (N), and

2. for any meta-variable declaration X: rA E -, we have gd(F) l- q_(X) : _(A).

In this case we say that - is a solvable signature. Furthermore, if for all meta-variables X in E, @(X) is a

AIIc-normal form, we say that • is a normal solution to =-.

Notice that according to the previous definition, if • is a solution to a constrained signature --, for all

ineta-variables X in --, _(X) is a ground term. If @ is also normal, then @(X) is pure.

DEFINITION 3.9 (Equivalent solutions). Let _1, _'2 be solutions to a valid constrained signature _-.

They are said to be equivalent, denoted _l =-xnc iK,, if and only if for all X in F., _I(X) -xnc _2(X).

To know whether or not a valid constrained signature is solvable is undecidable in the general ease. In

particular, it requires to decide the existence of solutions for constraints having the form (X M1 . • • Mi) _-

(]" N1 ... Nj), where X and Y are meta-variables, and to solve the inhabitation problem in a dependent-type

system. Those problems are known to be undecidable [29, 4].

Some kinds of signatures can be trivially discharged.

REMARK 1. If a valid constrained signature =- is solvable, then there exists a normal solution to -.

DEFINITION 3.10 (Failure signature). Let =- be the AHc-normal form of a valid constrained signature;

we say that =- is a failure signature if it contains a constraint relating two ground terms in AIIc-normaI fozvn

which are not identical.

REMARK 2. Faihtre signatures are not solvable.

The Cant or's theorem example can be described in our formalism as follows. Let F =

h: Ylp:(nat _ bool) _ bool.rlx:,,at --+ bool.(eq (p x) (,tot (p (f (g x))))).

eq : bool --+ bool --+ Type. not : bool _ bool.

g : (nat --+ bool) --+ nat. f : _mt _ nat _ bool. booI : Type. nat : Type,

and E -- X: v(eq]"]').]': vbool, the following parallel instantiation _ is a solution to E:

q2(}') =(not (f (g Ay:nat.Qmt (f y y)))))

iI,(X)=(h Ax:nat --+ bool.(x (g Ay:nat.(not (f y y)))) Ay:nat.(not (f y y))).

In the process of finding that solution, we have first solved the constrained signature --' =

X _--_.(h X,, Xx). (eq (G, X_,) (Trot (G, (f (g G))))) _I' (eq]" _').

14

X,: rnat -+ bool. Xv: r(nat -+ booI) --+ booI. X: r(eq l" Y). Y: rbool,

which has the solution

• --, bool.(x (g (f y y))))
02'(X,)=)_y:nat.Omt (f Y Y))

qJ'(Z) =ffJ(Z), otherwise.

It (:an be verified that, for example, _'((cq (X v X,) (not (X v (f (9 Xx))))) -xnc @'(eq I" Y).

In the rest of this section, we describe a method to find a solution to a constrained signature via

refinement steps. In the example above, E' is a refinement of --, and thus, a solution to E can be deduced

from a solution to --'.

3.3. The eonstruetlon steps: Elementary graftlngs. _ want to solve a constrained signature via

successive instantiation of recta-variables. Each one of these instantiations is called an elementary grafting. 2

DEFINITION 3.11 (Grafting). A grafting is an instantiation of a recta-variable, with possibly new dec-

larations of meta-variables and constraints. Let X be a rneta-variable, M be a term, and -' be a constrained

signature, the grafting of X with M in =-' is denoted by {X/--,M}.

Valid graftings (in --) are defined by the following typing rule,

" = =2. X:rA..E,

--'. -Z1;F b_ M : A

b_ ---2. -z'. %

-- _ {X/=, M t (Grafting)

In tile previous definition, ---' contains only the additional meta-variables and constraints that are nec-

essary to type M. However, E_. _E'. E1 is a conservative extension of E, i.e., all the expressions that are

typeable in --, are typeable in --2- -'. --l, too. In particular, it holds _ --'. Y-l.

The grafting {X/=_,M} can be applie(t to an expression or a context in the same way as the instantiation

{X/M}. However, only valid grafting can be applied to constrained signatures. Let -- be a valid constrained

signature, the application of the grafting {X/-,M} to E, instantiates the meta-variable X with M in ==,and

installs --' in the right place of-.

DEFINITION 3.12 (Application of grafting). Let - = E2. X: r A. E1 such that E _ {X/_,M},

EIX/-,M} = (--2. ='. EI)IX/ M}.

The application of a valid grafting preserves typing.

LEMMa 3.13. Let - be a valid constrained signature such that -- _ {X/z,M},

1. if _ "Z-;F, then 1-..ZIX/-,MI;rIX/M},

2. g --;r M: .4, then -tx/_,MI;rIx/Mt MIX/M} : .4{X/M l, and

3. g --; r b" S _ A, then EIXI-,M}; FtX/M } _ StX/M } _, .A|X/M}.

Proof. By induction on the typing derivations. The proof uses Proposition 2.10.0

The reduction to MIc-normal form of a constrained signature preserves its valid graftings.

2In Dowek's method, they are called elementary substitutions.

15

LEMMA 3.14. Let _ be a valid constrained signature, E _.. {X/=, M} if and only/f (--)$Mk _ |X/-, _I}.

Proof. _ show that = _ {X/-,M} implies (-)$_n c _ {X/=,M}. Tile other direction is similar. By

Lemma 3.6, (--)$_nc is a valid constrained signature. By Definition 3.5, E and (--)$_nc declare exactly the

same recta-variables, then, hy hypothesis, meta-variables declared in -=' are not in -. Since _ has the form

' X: rA'. =1-2' -1, (--)$),nc has tile form Z. X: rA. 21, where

1. -='. -1,=I'F }'-.._I : .4', and

2. -%= .4 =
From (1) and (3), -'.-_;F_ M :A. Therefore, by Lemma 3.6 and (3), -'. -I;F b_ M :.4. D

In our Cantor's theorem example we verify that

= tx/--,(h x. x.)L

where _E= X:r(eq Y Y). Y:rbool, and E' =

(eq (.Yp Xx) (not (X v (f (g X,))))) -_r (eq Y]').

X,: rnat -+ bool. Xv: r(nat -4 bool) -+ bool.

In fact, --' contains meta-variables which are not already declared in - (thus, -=' can be safely installed in

E), X is declared in =-, and

E'. Y: rbool _ (h Xp X.) : (eq Y Y).

Then, by Defilfition 3.11,

-- tX/s,(h x.)}.

Given a constrained signature, the choice of the next meta-variable to soh'e is crucial. Since properties

like confluence and normalization are available for an3: typeable expression in a prefix of a constrained

signature without constraints, meta-variables in those prefixes are very appropriate to solve in the first

place. The next property states that such variables exist.

LEMMA 3.15. Let =- be the AH£-normal form of a valid constrained signature such that =- # e and =- is

not a failure signature. Then, =_ has the form =-2. X: rA. =l, where

1. --1 does not contain constraints, and

2. _- X:rA. El.

Proof. The constrained signature _. is not empty, then it has at least one element. Assume that the first

element is a constraint i_l -_r N. By hypothesis and Lemma 3.6, _ -. Hence, it holds that b")1I _'r N.

By inversion of rule (Constraint), F _ 51 : B and F b_ N : B. Since M,N,B are well-typed without

meta-variables, they are ground, and by Lemma 3.4, it holds that F }- Jll : B and F I- N : B. Since =- is

a signature in AH_;-normal form, 51 and N are not identical. But this is not possible because -Z is not a

failure context. Therefore, the first element of E is not a constraint, and thus, = has the form F._. X: rA. F-a,

where _-x does not contain constraints. By the typing rules, we have _ X: r A. --1, and thus, by Lemma 3.4,

t- X: rA. --1. El

The type of a meta-variable gives enough information to guess a valid grafting. Assume, for example,

that a recta-variable X has a type A. If A = Kind, then by inversion of the type rule (Type), X may be

instantiate with Type. But also, by inversion of the rule (Prod), X may be instantiate with the term IIx:Z.Y

where Z is a new meta-variabte of type one of the sorts {Kind, Type}, and 1" is a new meta-variable of type

A (notice that Y shouht be declared in a context where the variable declaration x : Z exists). This case also

applies if A = Type.

t6

If A is a product, i.e., A = IIx:A1.A2, by inversion of the rule (Abs), we can instantiate X with tile term

)_x:Ai.Y where Y is a new recta-variable of type A (declared in a context where the variable declaration

x :Al exists).

In an5' case, and by inversion of the rule (Appl), it is always possible to instantiate X with tile term

(]'Z), where]" is a meta-variable of type IIx:})_.YA, Z is a meta-variable of type])_, 1)_ is a meta-variable

of one of the sorts {Kind, Type}, t".4 is a meta-variable with the same type as .4 (declared in a context where

the variable declaration x : l_ exists), and tile constraint .4 -_ YA[Z "v_ S°] is added to the constrained

signature. However, since we are interested in solutions modulo =xnc, any normal instantiation of Y has

the form (n M1 ... Mi) where n is a variable. Using this remark, we simplify the current case by using

the variables of the context where the meta-variable X has been declared. Assume a variable declaration

n : IIxl:A1 Hxj:Aj.B1. The meta-variable X can be instantiated with tile term (n X1 ... X,) of type

B2, where i <__j, X1, •.., X, are new meta-variables of the right type (according to the type of n), and the

constraint A -_ B2 is added to the constrained signature. We call this case imitation, because it is very

similar to the imitation rule of higher-order unification algorithms [22].

The imitation case, as it has been described before, is not complete. 111 a t)olymorphic type system,

as the Calculus of Constructions, if tile type of a term :1I is Hx:A.B, where B is not a product, the type

of (M N) may still be a product. That is, the number of arguments of 2_I is not bounded by the number

of products in its type. Take for example the context O : nat. nat : Type. P : H.r: Typc.x. Ill this context,

(P nat) : nat, (P (nat --+ nat) O) : nat, (P (nat --+ nat --+ nat) 0 O) : nat, In fact, for an5, natural

number i > 0, there exist M1,..., Mi such that (P _111 ... Mi) : nat.

The fact that the number of arguments of a term is not fixed bi" its type is called splitting [21]. Splitting

raises some technical problems in higher-order unification algorithms and so, in proof-synthesis methods [13].

Given tile valid judgment E; F _- M : Hxl:A1 IIxi:Ai.B, where B is not a product, for any j > 0,

there exists a term N having tile form (M X1;....X_) such that it is well-typed in a constrained signature

extending E. The term N is called an intitation of M of grade j. Furthermore, if j > i, (j - i) is the splitting

grade of N. Otherwise, the splitting grade of N is 0. We describe a method to build imitations of arbitrary

splitting grade.

DEFINITION 3.16 (hnitation with splitting). Let E be a signature, without constraints, in AHc-normal

form, M be a term such that E; F _- M: A, and E; F t- A : s where s E {Kind, Type}. For i > O, the set of

imitations of AI of grade i, denoted [E;F I- M : A] i, is a set of judgments in ;_llc with constraints defined

by induction on i as follows.

• Ifi=O, then {E;F_M:A}.

• If i > O, then for all =-;F _.. N : B in [E;F _ M : A] i-I, we consider the union of the following set

of judgments, a

- If B has the form IIA_.A2, then

{=_'. _; r b_ N' : B'I =--'= X: FA1,

X is a fresh meta-variable,

.V' = (_\" X),

B'e (.-1._[x ..< l'°]),,_ }

3We recall that Hc is strongly normalizing (Lemma 2.1).

17

- Otherwise this is the case of splitting,

{='. --;F [_ N' : B'[--.' = B -_r flr,.I._. X:rY_.]_: _.rs2. _:rs_,

X,]'l , I'_ are fresh meta-variables,

sl E {Kind, Type},

8 2 = S,

N' = (iv x),
B'E (]_[X "r_ t°])ln_ }

We verify that judgments in tile set [E; F F- M : A] i are valid.

LEMMA 3.17. Let r be a signature in MIz-norrnal form, M be a term such that E;F _- M : A, and

Z;F _- A : s where s E {Kind, Type}. For i >_ O, the elements of [E;F F-M : A] i are valid judgments.

Proof. By induction on i. The base case holds by Lemma 3.4. At the induction step we use the rules

(Appl), (Cony), and the fact that the reduction to IIc-normal form preserves the type. El

We formally define the elementary graftings.

DEFINITION 3.18 (Elementary graftings). Let- be the AHc-normal form of a valid constrained signature

such that -- ¢ • and E is not a failure signature. We choose a recta-variable X in --, i.e., E = --2. X: rA. El,

such that _- X: rA. --1. Such a meta-variable exists by Lemma 3.15. We define the following graftings by

case analysis on A (the eases are not disjoint):

1. A = Kind. We consider" the grafting {X/, Type}.

2. ,4 E {Kind, Type}. For any s E {Kind, Type}, we consider the 9rafting {X/z, IIz.}'}, where Z,Y are

fresh mete-variables, and Z' = Y: z.r A. Z: vs.

3. A = HA_.A.,. I'Ve consider the grafting {X/--,AA_.I'}, where 1" is a fres'h meta-variable, and E' =

Y: A_.FA2-

4. --1 ; F _- A : sl, sa C {Kind, Type}. For all variables n in the context F, i.e., 1 <_ n < TI, such that

--1 ; F _- n__: B (13 is a AIIc-norvnal forvn), and for i >_ 0, we consider all the graftings

{X/A_"r A'. Z' ,/_af }

where E'. _I;F _ M : A' is in [E1;F t-- n_: B] i.

All the graftings considered above form the set of elementary graftings of the meta-variable X in =-.

Due to the splitting rule, the set of elementary graftings of one recta-variable is potentially infinite.

Some of the elementary graftings lead to failure signatures. An early detection of failure signatures allows

the pruning of the research space of valid graftings. This is why we use constrained signatures in MIL-normal

form.

, verify that the elementary graftings are valid graftings.

THEOREM 3.19 (Elementary graftings). Let E be the MIc-normal form of a valid constrained signature

such that -- ¢ e and - is not a failure signature. If X is a meta-variable in E such that it is well-typed

without constraints, then the elementary graftings of X are valid 9raftings in --.

Proof By Lemma 3.15, E has the form E.). X: rA. -1. First, we verify that

(3.1) _ El ;F,

(3.2) ,4=KindorE_;rb-A:s, sC {Kind, Type}.

Then, we reason by case analysis on A, and we consider all the elementary graftings of X.

18

A = Kind. By using Eq. 3.1 with the rule (Type), we get Ea;F _-- Type : Kind. Therefore,

-- (xL Type}.
A E (Kind, Type}. For any s' E (Kind, Type}, we consider the grafting {X/--,Hz.]'}, where], Z are

fresh meta-variables, and __, = y: z.rA. Z: rs'. We consider two cases according to the form of s'.

- s' = Kind. We have the derivation

- 8' = Type• We have the derivation

In both cases,

(3.3)

The derivation continues as follows

Eq. 3.1 (Meta-Var-Decla)
Z: r Kind. =-1

Eq. 3.1 (Type)

El; F _ Type : Kind (Meta-Var-Decl.,)

b_ Z: rs'. -El.

Eq. 3.3 (Meta-Var)
Z:rs'. E1;F b" Z : s'

Z;r---_.-E-T; Z.I'- (Var-Decl)

Now, we consider two cases according to the form of .4.

- A = Kind. We have the derivation

b" Z:rs'. El; Z.F

Y: z.rKind. Z: rs'. --1

- A = Type. We han,e the derivation

In both cases,

(3.4)

But also

Therefore,-Z _,- {X/z,IIz.]'},

(Meta-Var-Decll)

Z: rs'. El; Z.F
Z: rs'. =--a;F b" Type:Kind (Type)

--;-:----- --_--_,-=- (Meta-Var-Decl2)_"] : z.r Type. Z: r, . =1

Y: z.rA. Z: rs'. El.

Eq. 3.4 (Meta-Var)

Y:z.rA. Z:rs'. --1;Z.F _ Y:A (Prod)
Y: z.FA. Z:rs'. E1;F _'0 IIzY :,4

.4 = IIar.A2. We consider the grafting {X/--,)_A, .1"}, where 1" is a fresh recta-variable, and -' =

1": A,.FA2. As in the previous case we have the derivation

Eq. 3.2 "-'- "-1;-41.F _]" : .42

E'. El _ AA_ 5" : IIa_ .A2
(Abs)

Therefore,-- b' {X/z, AA_.Y}.

19

* For 1 < n < IF] such that 21;F i- n_: B (B is a AII_-normal form), we consider all the graftings

{X/A,,-ra,. --,M}

where --'. _;F _ M : A' is in [E;F F- n__:B] i, i > 0. By Lemma 3.17,

(3.5) y,. s ; F _-- M: .4',

D

(3.6) E'. --1; _" ,4' : s.

We also have

E'.E1;Fb..4:s Z'.-_;F_.4':s

Eq. 3.5 _ A ___[, A t. E t, 2 1 (Conv)
A -_r A'. =_.'.-t;F _ M :A.

Therefore, E b" {X/A__rA'.-:, ill}.

(Constraint)

3.4. Splitting in MI. In a calculus without polymorptfisnl, as MI, splitting is not possible. Thus,

in that case the number of applications of a variable is fixed by its type. In our version of MI using the

Mlc-calculus, splitting is still possible since we allow meta-variables of types and kinds.

However, some simplifications are still possible.

A term having the form (X[S] 2ill Mi) or (X M1 Mi), i >_ O, where X is a meta-variable is said to be

flexible. A term having the form Type, Kind, or (n__Mx Mi), i > 0 is said to be rigid. Consider a term M such

that =,-"F }---M : II.4_... IIA., B in AII. If B is a AIIc-normal form and it is not a product, it is either flexible

or rigid. If B is flexible, the number of applications of n depends on the actual parameters of M. If B is

rigid, the number of applications of M cannot be greater than i. In that case, we could consider imitations

of M only of grade j <_ i, since their splitting grade is 0, the set of such imitations is finite (inodule renaming

of fl'esh meta-variat)les).

3.5. Putting everything together: The method. Given a constrained signature E, we solve each

meta-variable by exploring the set of its elementary graftings. We can organize the search of elementary

graftings as follows.

DEFINITION 3.20 (Search tree). Let - be a valid constrained signature; we build a search tree of--,

where nodes are labeled by constrained signatures in MIc-normal form and edges by elementary graflings, in

the following way:

• The root i,s labeled by (E)$_n c .

• Nodes labeled by the empty signature or by failure signatures are leaves.

• If a nodc is labeled by a signature -- which is not empty or a failure ,signature, we choose a recta-

variable X in E such that it is well-typed in a signature without constraints and for each elementary

grafting {X/=_,5I} of X, we grow an edge labeled by this elementary signature to a new node labeled

bu (2{x/z, M})+_n_.

We claim that if there exists a node labeled by the empty signature in a search tree of --, then E is

solvable, and a solution can be found by composing sequentially all the elementary graftings along a path

in the search tree containing the node labeled by the empty signature. Conversely, if there exists a solution

to a constrained signature 2, it can be found, modulo -m,-, in a search tree of 2. These two properties,

soundness and completeness, are proved in Section 4.

20

A semi-algorithm to solve a valid constrained signature is to enumerate tile nodes of a search tree to

find a leaf labeled by the empty signature. Notice that tile enumeration must deal with infinite paths in the

tree, but also with infinite branching because the set of elementary graftings of a meta-variable is potentially

infinite.

EXAMPLE 1 (Revisited Cantor's theorem example). Let F be the context

h : IIp:(nat -4 bool) -4 bool.l-lx:nat -4 bool.(eq (t) x) (not (p (f (g x))))).

eq : bool -4 bool -9 Type. not : bool -4 bool.

9 : (nat -4 bool) -4 nat. f : nat -4 nat -4 bool. bool : Type. nat : Type,

and E = X: r(eq Y)'). 1": rbool. Find a solution to F-.

A ,search tree is built from the root ----(notice that it is a MIc-normal form). Since -- does not contain

constraints, we can take any meta-variable ofF. to solve. Let us choose the meta-variable X. The type of X is

neither a product nor a sort. Therefore, the only elementary 9rafting.s that are possible for this meta-variable

are those generated by the imitation .step. We instantiate X with an imitation of grade 2 of the variable h

(no splitting takes place),

[--; F _- h: Ylp:(nat -4 bool) -4 bool.IIx:nat -4 bool.

(eq (p (, ot (p (f (g x)))))] =

{--'. -; V _ (h Xp Xz) : (eq (Xp -Yz) (not (Xp (f (g -Yx)))))[

X_, Xp are fresh meta-variables,

--' = X_: mat -4 bool. XI,: r(nat -4 bool) -9 bool}

We label an edge with the elementary grafting,

tX/z,(h x,, x)t,

where =--1 =

(eq (Xp Xx) (not (Xp (f (9 Xx))))) _-I" (eq)" Y).

X_: rnat _ bool. Xp: r(nat -4 bool) -4 bool.

This edge points to the constrained signature:

(eq (x,, (,,ot (.'6 (f (g (eq r r).
X.,: rnat -4 bool. XI,: r(nat -4 bool) --4 bool.

Y: r bool.

Notice that the meta-variable X is no longer in the signature. Instead, there are new meta-variables X, and

X v. At this stage, any meta-variable can be chosen. We solve the meta-variable X_ of type nat -4 bool. An

elementary grafting of this meta-variable is

{X_ /z2)_y:nat.Z} ,

where E_. = Z: u:n,_t, rbool. We label a new edge with this elementary grafting. It points to the constrained

signature:

(eq (X_ _y:nat.Z) (not (Xp (f (9 _y:n.at.Z))))) =r (eq _"]').

Z: u t. rbooI. Xp: r(nat -9 bool) -4 bool.

) ": r booI.

Eventually, after some iterations an empty signature is obtained. A solution can be found by composing

all the elementary graftings along the path of the search tree leading to the empty signature.

21

4. Soundness and Completeness.

61
4.1. Soundness. We claim that if--l _ -2 _ 0_-1 _•.. _ =_ is a path of the search tree of a valid

constrained signature E, such that --1 = (-)$_n_ and E,_ -- e, the sequential composition of the graftings

01,..., 8,__ l results in a solution to =.

The proof of this statement goes as follows. First, we describe which lists of grafting are valid with

respect to a valid constrained signature. These lists are called sequential graftings. Next, we characterize

the sequential graftings that lead to an empty signature. They are called derivations. The key points of the

proof are:

1. The sequential composition of the graftings in a derivation of - is a solution to E.

2. A path from the root of a search tree of E leading to an empty signature is a derivation of ---.

The soundness theorem is a consequence of (1) and (2).

DEFINITION 4.1 (Sequential grafting). A list _, = (0_,..., Oi), i > O, of graftings is a sequential grafting

of a valid constrained signature - if and only if

• _!, is the empty list, i.e., i = O, or

• - _" Ol and (02,..., Oi) is a sequential grafting of--01.

The application of ._i, to =_, is defined as -_!, = ((--02)...)Oi. We overload this notation to apply sequential

graflings to expressions and contexts.

D_:FINITION 4.2 (Derivation). A sequential graftiT_g _, of a valid constrained signature =_ is called a

derivation of -- if and only if (--_)J_xnc = e.

RE.Xb_,RK 3. Failure signatures do not have derivations.

DEFINITION 4.3 (Sequential composition). Let _' be a sequential grafting of a valid constrained signature

E. The sequential composition of ¢, denoted by _!,, is the parallel instantiation defined for all X in ,E as

=

The next propositions are proved at the end of this section. They are the key proving the soundness

theorem.

PaOPOSITION 4.4. If _!, is a derivation of a valid constrained signature --, then _ -- the sequential

composition of _/_' is a solution to =-.

PROPOSITION 4.5. Let =-l _ -2 _ ... _ -,_, n >_ O, be a path of a search tree of a valid

constrained signature - such that -1 = (-)$xnL, then the list of graftings ¢ = (01,..., 0,,-1) is a sequential

grafting of E, and for 0 < i < n, Ei = (--_/0$x[lc •
_:,

THnOREM 4.6 (Soundness). Let (E)$xn c _ • be a path of a search tree of a valid constrained

signature =-, the sequential composition of g, is a solution to =-.

Proof. By Proposition 4.5, _(,is a sequential grafting of-, and e = (E¢)$xn _ . Therefore, by Definiti(m 4.2,

t'_,is a derivation of --. Finally, I)y Proposition 4.4, the sequential composition of _(,, i.e., _',, is a solution to

E. 0

The rest of this section is dedicated to the proof of Proposition 4.4 and Proposition 4.5.

First, we prove that sequential graftings preserve typing.

LzM_I.._ 4.7. Let _i, be a sequential grafting of a valid constrained signature --,

1. if _ --; F, then _ --V'; F_.(,,

2. if --; F _ 3f : A, then --'_,; F_'I, _,, M_'., : A_!,, and

3. if _E;F _ S _, :.k, then -_'i,; Fg, _ S¢ _, A._,.

Proof. We reason by induction on the length of the list ¢ and Lemma 3.13. E]

22

Proposition 4.4. If f, is a derivation of a valid constrained signature --, then ¢ is a solution to %

Proof. Since = is a valid constrained signature, for any constraint M1 --_r M2 and meta-variable decla-

ration X: _A in --,

(4.1) E;F _ M1 : B,

(4.2) E; F _ M2 : B,

(4.3) -,="A N X : .4.

Because _",is a sequential grafting of - and by Lemma 4.7,

(4.4) E_/); F_,_ _]111¢ : B_:,,

(4.5) E¢; F(, _-0-_I2¢ : Be.,,

(4.6)

By Lemma 3.6,

(4.7)

El,; A¢:, b" Xf, : At,,.

(--V;)$_n_ ; F_::, D MaC : By:,,

(4.8) (-.,,*_n_, v D

(4.9) (--g')$xrIc ;.k¢, _ Xg,: Bg,.

By Definition 4.3, F_:, = _(F), A_!, = _(_), M_(, = _(Mx), and M2_ e, = _(-_h). Since ¢ is a derivation of

-Z, (Ef,)$xn c = e. Thus, -AI1 -_v Ma is not in (--¢)J_ane. Hence, (Mtv')$xnc and (M2(')$xnL are identical

ground terms (otherwise the constraint could not be discharged). Therefore, _,'_is a solution to E. []

LEMMA 4.8. For all valid constrained signature --, _!, is a sequential grafting of E if and only if (, is a

sequential grafting of (E)_-_nL"

Proof. By induction on the length of f.,. If (, is the empty list, then the conclusion is trivial by

Definition 4.1. Otherwise, we use the induction hypothesis, and Lemma 3.14. []

LEMMA 4.9. For all valid constrained signature --, if _':, is a sequential grafting of (--)$_[k, then

((--)$_n_*/')$_n_ = (--*/')$_n_.
Proof. By induction on the length of _5. The base case is trivial. At the induction step we use equational

reasoning on AIIc. rl

0i 02 0,,-1 --
Proposition 4.5. For all n _> 0, if --1 _ --a _ ... W----'- =,, is a path of a search tree of a valid

constrained signature E such that E1 = (7-)$_n_, the list of graftings _', = {01,...,0,_-1) is a sequential

grafting of ---, and for 0 < i _< n, Ei = (=_")$xne-

Proof. By induction on n. The base case is trivial. Assume that n > 0 and take _/." = (0._,,... ,Oi). By

construction, 0_ is an elementary grafting of a meta-variable in .E_. Thus, by Theorem 3.19, 0_ is a valid

grafting of E1 and --2 = (--_0_).l.xne is well-defined. By induction hypothesis, _,!,' is a sequential grafting of

--'tOt, and --i = (E_ (0_*h"))$_ne = (--_¢)$xne. By Definition 4.1, f, is a sequential grafting of-_ = (E)$xn _.

Therefore, by Len,ma 4.8, ¢ is a sequential grafting of ---, and by Lemma 4.9, Ei = (E_/")$_ne. t-1

23

4.2. Completeness. The completeness property states that if there is a solution _ to a constraint

signature _, there exists a derivation _') of _, such that ¢ --_[I_ ffJ. This claim is proved [)y induction on the

size of ffJ.

DEFINITION 4.10 (Size of a pure term). The size of a pure term defined by induction over the structure

of terms is as follows.

• Is I = 1, if s • {Kind, Type}.

• = 1.

• I(M N) I -- 12III + IN[+ 1.

• I: a. II = tAI + IMI + 1.

• InA.BI = IAI+ IBI+ 1.
DEFINITION 4.11 (Size of a parallel instantiation). Let q_ be a parallel instantiation of a constrained

signature =-, the size of ffJ, denoted by I_l, is the sum of the sizes of _(X) for all X in E.

LEMM._ 4.12. Let -- be a valid constrained signature in MI_-normal form, if • is a normal solution of

F., then there exists a seaTvh tree of _ with a derivation ¢, such that _, =-_nc ffJ.

Proof. By induction on the size of _.4 Since ffJ_.is a solution to _=, _ is not a failure signature. If E = e,

the empty list is a derivation of F.. Otherwise, take the first meta-variable declared in E, namely X:rA.

This meta-variable exists by Lemma 3.15. Notice that A and F do not depend on an3, other recta-variable or

constraint. We reason by case analysis on M = ffJ_.(X). Since -- is a constrained signature in AHc-normal

form and _ is a normal solution, M, .4, F are ground MIc-normal forms.

• M = Type. In this case, .4 = Kind. Consider the elementary grafting of X, 0 = {X/_ Type}. Let

--1 = (-E0)lxH_, E] is well-defined by Lemma 3.13 and Theorem 3.19. We check that _1 (X) =

k_a(X), X • _l, is a normal solution ofF-z, and that i__,l < [ff_a[.

• ._I = IIA,.A2. In this case, A • {Kind, Type} and F _- .4_ : s, s • {Kind, Type}. Consider

the elementary grafting of X, 0 = {X/=_,IIz.Y}, where Z,Y are fresh meta-variables, and S' =

Y: z.rA. Z: rs. Let _1 = (--0)$.m c • We check that

A1 if IV = Z
_k (W) = A2 if ll" = }"

kVz(lV) otherwise

is a normal solution of ---a, and that Iq/_-i [< I_zl-

• M = AA_.N. In this case, A • II&.A2 and Y F N : A._. Consider the elementary grafting of X,

0 = {X/z, AA,.Y|, where l" is a fresh meta-variable, and --' = I': A,.FA2. Let --1 : (--0)$:m c. We
check that

• '-- (ll')= _ A2 iflV=Y

=_ (_z(ll') otherwise

is a normal solution of---i, and that [q'"] < [ffJ--[.

• m = (_ aI_ ... MJ. In this case, F t- n : B, B (in kIIc-normal form) is a product, F l- A : s, and

s • {Kind, Type}. Consider the elementary grafting of X, 0 = {X/A__,-A,. -, (n_ X_ ... Xi)} where

--'; F k (R X1 ... X_) : A' is in [F _- n__: B]*. Let --_ --= (_--0)San _ . We check that

alj ifW=._, 0 <j < i• ", (II') = __= (lI') otherwise

41Ii this proof, the index of q_ is relevant.

2,t

isanormalsolutionof-1, andthat [_,[< [_--[.
In allthecases]_'--1[<]_-l, thenbyinductionhypothesis,thereexistsasearchtreeof --1 with a derivation

_/_l, such that _l_l =xrl_ _r=l. Then, _/, = (0, g'l> is a derivation of E. Since _=(X) = 9"1, (XO),. for all X C --,

_z(X) ----_n_ X(O, _t_l) = X_':,. Therefore, _ ---,xnL k12-. 17

THEOREM 4.13 (Completeness). Let-- be a valid constrained signature, if • is a solution of--, then

there exists a search tree of E with a derivat?on _!_,such that 7 =xn_ o;.

Proof. If q is a solution of E, by Lemma 3.6 and Definition 3.8, q is a solution of (F.)$xn c too. By

Remark 1, the parallel instantiation q'(X) = (q(X))$_n_, X E 3., is a normal solution of (-)$xnc. Hence,

by Lemma 4.12, there exists a search tree of (E)$xn c with a derivation _!,, such that _ -xnc q". Therefore,
7

=xnc q. By Definition 3.20, a search tree of F= is a search tree of (--)$_nc. 17

5. Related Work and Summary. Automatic proof synthesis is at the basis of proof assistant systems.

A complete method for search of proof trees based on resolution and unification was formulated by Robinson

[37] for the first-order logic, and by IIuet [21] for the higher-order logic. In type systems, higher-order

nnification (HOU) algorithms are known for the simply-typed A-calculus [22] and for the MI-calculus of

dependent types [17, 35].

For the cube-type systems, Dowek [12, 13] reformulates the unification procedure and generalizes it as

a method of term enumeration. Recently, Cornes [10] proposed an extension of Dowek's method to the

Calculus of Constructions with Inductive Types.

Dowek, Hardin, and Kirchner [15] propose a first-order presentation of Huet's HOU algorithm based on

explicit substitutions and typed meta-variables. This algorithm is generalized to solve higher-order equational

unification by Kirchner and ttingeissen [25], and restricted to the case of higher-order patterns by Dowek,

Hardin, Kirchner, and Pfenning in [16]. The algorithm for pattern unification via explicit, substitutions has

been extended (without proof) to dependent types, and implemented in the Twelf system [34].

On the other hand, Briaud [7] shows how HOU can be considered as a typed narrowing in the A_-calculus

of explicit substitutions. Magnusson [28] presents a unification algorithm in Martin-L6f's type theory with

explMt substitutions. This algorithm solves first-order unification problems, but leaves unsolved the flexible-

flexible constraints.

Our main contribution is the presentation of Dowek's method of proof synthesis in a suitable theory with

explMt substitutions and meta-variables. This way, proof-terms call be built incrementally as the proofs are

done, and each construction step is guaranteed by the type system.

Just as in [12, 13], the method presented here is sound and complete. Thus, it can be seen as a

semi-algorit.hm for ground higher-order unification in AII and the Calculus of Constructions. Although, the

implementation issues are out of the scope of this paper, a preliminary version of our method has been

implemented in OCaml, and it is electronically available by contacting the author.

Tile underlying theory of the m_thod proposed here is the MIc-caleulus. We believe that the same ideas

can be applied to other formalisms satisfying at least the same typing properties as AIIc, that is, confluence,

weak-normalization, subject reduction, and instantiation lemma. The AIIz-calculus has some features that

are useful for our proof-synthesis method and they seem to be in unification issues:

• It is a finite first-order rewriting system. In particular, some properties as soundness and complete-

ness of the method are much simpler to prove.

• It uses general composition of substitutions and simultaneous substitutions. In [33], we discuss

efficiency improvements to tile method based oll these features.

• Since substitutions distribute under abstractions and pr<_<tucts, normal forms have a simple charac-

25

terization. For example, the normal form of a type has the form IIAt HA_.A where A is not a

product.

Finally, notice that ,XIIc does not handle the q-rule. Extensional versions of explicit substitution calculi

have been studied for ground terms [24]. However, work is necessary to understand the interaction with

dependent types and meta-variables.

Acknowledgments. Many persons have contributed to this work with useful remarks and suggestions,

in particular Gilles Dowek, Delia Kesner, Nikolaj Bjorner, and the anonymous referees. The author is very

grateful to them.

REFERENCES

[1] M. ABADI, L. CARDELLI, P.-L. CURIEN, AND J.-J. L_vY, Explicit substitution, Journal of Functional

Programming, 1 (1991), pp. 375 416.

[2] T. ALTENKIRCH, g. GASPES_ B. NORDSTROM, AND B. VOS SYDOW, A User's Guide to ALF, Chahners

University of Technology, Sweden, May 1994.

[3] B. BARRAS, S. BOUTIN, C. CORSES, J. COURAST, .J. FILLIATRE, E. GIMI_SEZ, H. HERBELIS,

C-. HUET, C. I_|UNOZ, C. _IIJRTHY, C. PARENT, C. PAULIN, A. SA'fBI, AND B. _VERNER, The

Coq Proof Assistant Reference Manual Version V6.1, Tech. Report 0203, INRIA, August 1997.

[4] hi. BEZEM AND J. SPRtNGINTVELD, A simple proof of the undecidability of inhabitation in AP, Journal

of Functional Programming, 6 (1996), pp. 757 761.

[5] R. BLOO, Preservation of Termination for" Explicit Substitution, Ph.D. thesis, Eindhoven University of

Technology, 1997.

[6] R. BLOO AND K. H. ROSE, Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection, in Proceedings of CSN-95: Computer Science in the Netherlands,

Nov. 1995.

[7] D. BRIAUD, Higher order unification as a typed narrowing, tech. report, CRIN Report 96-R-112, 1996.

[8] T. COQUAND, Une Thdorie de Constructions, thbse de doctorat, U. Paris VII, 1985.

[9] T. COQUAND AND G. Hub:r, The Calculus of Constructions, Infornmtion and Computation, 76 (1988),

pp. 96 120.

[10] C. CORNES, Conception d'un langage de haut niveau de reprdsentation de preuves: rdcurrence par

filtrage de motifs, unification en prdsence de types inductif primitifs, synthOse de lemmes d'inversion,

th/?se de doetorat, Universit(_ Paris VII, 1997.

[11] P.-L. CIrRIEN, T. HARDIN, AND J.-J. L_:;VY, Confluence properties of weak and strong calculi of explicit

substitutions, Journal of the ACM, 43 (1996), pp. 362-397.

[12] G. DOWEK, Ddmonstration automatique dans le calcul des constructions, thbse de doctorat, U. Paris

VII, 1991.

[13] --, A eomplete proof synthesis method for type systems of the cube, Journal of Logic and Computation,

3 (1993), pp. 287 315.

[14] --, Automated theorem proving in first-order logic modulo: On the difference between type theory and

set theory, in First-order Theorem Proving '98, 1998, pp. 1 21.

[15] G. DOWEK, T. HARDIN, AND C. KIRCtlNER, Higher-order unification via explicit substitutions (ex-

tended abstract), in Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer

Science, San Diego, California, 26 29 June 1995, IEEE Computer Society Press, pp. 366 374.

26

[16]G. DOWEK, T. HARDIN, C. KIRCHNER, AND F. PFENNING, Unification via explicit substitutions: The

case of higher-order patterns, in Proceedings of the Joint International Conference and Symposium

on Logic Programming, M. Maher, ed., Bonn, Germany, Sept. 1996, MIT Press.

[17] C. ELLIOTT, Higher-order unification with dependent types, in Proceedings of the International Con-

ference on Rewriting Techniques and Applications (RTA-89), N. Dershowitz, ed., vol. 355 of LNCS,

Chapel Hill, North Carolina, Apr. 1989, Springer-Verlag, pp. 121 136.

[18] M. C. F. FERREIRA, D. KESNER, AND L. PUEL, Lambda-calculi with explicit substitutions and com-

position which preserve beta-strong normalization, in Algebraic and Logic Programming, 5th Inter-

national Conference, ALP'96, M. Hanus and M. Rodrfguez-Artalejo, eds., vol. 1139 of lncs, Aachen,

Germany, 25 27 Sept. 1996, Springer, pp. 284 298.

[19] J.-Y. GIRARD, Interprdtation FonctioneUc et E,limination des Compures de I'Arithmdtic c_'Ordre

Supdrieur, th_se de doctorat, Universit6 Paris VII, 1972.

[20] R. HARPER, F. HONSELL, AND G. PLOTKIN, A framework for" defining logics, Journal of the Association

for Computing Machinery, 40 (1993), pp. 143-184.

[21] G. HUET, Constrained Resolution A Complete Method for Higher Order Logic, Ph.D. thesis, Case

Western Reserve University, 1972.

[22] --, A unification algorithm for typed lambda calculus, Theoretical Computer Science, 1 (1975), pp. 27-

57.

[23] F. KAMAREDDINE AND A. Rfos, A lambda-calculus _t la De Bruijn with explicit substitutions, LNCS,

982 (1995), pp. 45 62.

[24] D. KESNER, Confluence properties of extensional and non-extensional)_-calculi with explicit substi-

tutions (extended abstract), in Proceedings of the Seventh International Conference on Rewriting

Techniques and Applications (RTA-96), H. Ganzinger, ed., vol. 1103 of LNCS, New Brunswick, New

Jersey, 1996, Springer-Verlag, pp. 184 199.

[25] C. KIRCHNER AND C. RINGEISSEN, Higher order equational unification via explicit substitutions, in

Proceedings of the International Conference PLILP/ALP/HOA'97, vol. 1298 of LNCS, Southampton

(England), September 1997, Springer.

[26] P. LESCANNE, From Ao- to)_v a journey through calculi of explicit substitutions, in Proceedings of

the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

January 1994, pp. 60 69.

[27] P. LESCANNE AND J. ROUYER-DEGLI, Explicit substitutions with de Bruijn's levels, in Proceedings of

the International Conference on Rewriting Techniques and Applications (RTA-95), J. Hsiang, ed.,

vol. 914 of LNCS, Chapel Hill, North Carolina, 1995, Springer-Verlag, pp. 294 308.

[28] L. MAGNUSSON, The Implementation of ALF--A Proof Editor" Based on Martin-LS/'s Monomor-

phic Type Theory with Explicit Substitution, Ph.D. thesis, Chalmers University of Technoh)gy and

GSteborg University, Jan. 1995.

[29] D. MILLER, Unification under a mixed prefix, Journal of Symt)olic Computation, 14 (1992), pp. 321 358.

[30] C. Mw_oz, Confluence and preservation of strong normalisation in an explicit substitutions calculus

(extended abst_uct), in Proceedings of the Eleventh Ammal IEEE Symposium on Logic in Computer

Science, New Brunswick, New Jersey, July 1996, IEEE Computer Society Press: pp. 440 447.

[31] --, Dependent types with explicit substitutions: A meta-theorctical development, in Types for Proofs

and Programs, Proceedings of the International Workshop TYPES'96, vol. 1512 of LNCS, Aussois,

France, 1997, pp. 294 316.

27

[32]--., A left-linear variant of Aa, in Proc. International Conference PLILP/ALP/HOA'97, vol. 1298 of

Lecture Notes in Computer Science, Southampton (England), September 1997, Springer, pp. 224

234.

[33] --, Un calcuI de substitutions pour la reprdsentation de preuves partielles en thdorie de types, th_se de

doctorat, Universit(_ Paris VII, 1997. English version available as INRIA research report RR-3309.

[34] F. PFENNING .AND C. SC_Rlk[ANN, Twdf user's guide, 1.2. edition, Tech. Report CMU-CS-1998-173,

Carnegie Mellon University, September 1998.

[35] D. PY?_I, A unification algorithm for the)_II-calculus, International Journal of Foundations of Computer

S('ience, 3 (1992), pp. 333 378.

[36] A. Rfos, Contributions d I'dtude de)_-calculs avec des substitutions explicites, thb_se de doctorat, Uni-

. versit_: ' Paris VII, 1993.

[37] J. A. ROBINSON, A machine-oriented logic based on the resolution principle, Journal of the ACM, 12

(1965), pp. 23 41.

[38] ._I. Z.-XlONC, Mechanical procedure for proof construction via closed terms in typed _ calculus, Journal

of Automated Reasoning, 4 (1988), pp. 173-190.

[39] H. ZANTEr, L_, Termination of tcrm rewriting by semantic labelling, Fundamenta Informaticae, 24 (1995),

pp. 89 105.

[40] --., Termination of O and 1-I¢ by semantic labeling. Personal communication, 1996.

28

REPORT DOCUMENTATION PAGE Form Approved
OMB No 0704-0188

Public reporting burden for this collection o¢ information is estimated to average 1 hour per response including the time for reviewing instructions, search ng ex st ng data sources.

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of th s

collection of information, including suggestions for reducing th_s burden, to Washington Headquarters Services, Directorate for Information Operations and Reports 1215 Jefferson

Davis Highway, Suite 1204, Arlington_ VA 22202-4302, and to the Office of" Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY(Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1999 Contractor Report
4. TITLE AND SUBTITLE

Proof-term synthesis oll dependent-type systems via explicit substitutions

6. AUTHOR(S)

C_sar Mufioz

7. PERFORMINGORGANIZATIONNAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-2199

g. SPONSORING/MONITORINGAGENCYNAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
L_mgley Research Center
Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 99-47

10. SPONSORING/MONITORING
AGENCYREPORTNUMBER

NASA/CIl-1999-209730
ICASE Report No. 99-47

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to Theoretical Computer Science.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Typed)_-terms are used as a compact and linear representation of proofs in intuitionistic logic. This is possible since
the Curr3--Howard isomorphism relates proof trees with typed)_-terms. The proofs-as-terms principle can be used to
check a proof by type checking the A-term extracted from the complete proof tree. However, proof trees and typed
A-terms are built differently. Usually, an auxiliary representation of unfinished proofs is needed, where type checking
is possible only on complete proofs. In this paper we present a proof synthesis method for dependent-type systems
where typed open terms are built incrementally at the same time as proofs are done. This way, every construction
step, not just the last one, may be type checked. The method is based on a suitable calculus where substitutions as
well as meta-variables are first-class objects.

14.SUBJECT TERMS

proof synthesis,
lambda-calcutus

higher-order unification, explicit substitutions,
15. NUMBER OF PAGES

dependent types, 33

16. PRICE CODE

ag_
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

i

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

_SN7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

